Du er her: Hovedsiden  >  Kunnskapsløftet  >  Hovudområde
  I denne menyen finner du ressurser på tvers av hovedområdene i faget. Oppgaver og mer stoff finner du ved å klikke deg inn på de matematiske hovedområdene.  
  Til læreren
 
Ressurser
 
Kunnskapsløftet
 
 

Hovudområde i matematikk 8.-10. trinn

Tal og algebra
Hovudområdet tal og algebra handlar om å utvikle talforståing og innsikt i korleis tal og talbehandling inngår i system og mønster. Med tal kan ein kvantifisere mengder og storleikar. Tal omfattar både heile tal, brøk, desimaltal og prosent. Algebra i skolen generaliserer talrekning ved at bokstavar eller andre symbol representerer tal. Det gjev høve til å beskrive og analysere mønster og samanhengar. Algebra blir òg nytta i samband med hovudområda geometri og funksjonar.

Geometri
Geometri i skolen handlar mellom anna om å analysere eigenskapar ved to- og tredimensjonale figurar og gjere konstruksjonar og berekningar. Ein studerer dynamiske prosessar, som spegling, rotasjon og forskyving. Hovudområdet omfattar òg det å utføre og beskrive lokalisering og flytting.

Måling
Måling vil seie å samanlikne og oftast knyte ein talstorleik til eit objekt eller ei mengd. Denne prosessen krev at ein bruker måleiningar og høvelege teknikkar, målereiskapar og formlar. Vurdering av resultatet og drøfting av måleusikkerheit er viktige delar av måleprosessen.

Statistikk, sannsyn og kombinatorikk
Statistikk omfattar å planleggje, samle inn, organisere, analysere og presentere data. I analysen av data høyrer det med å beskrive generelle trekk ved datamaterialet. Å vurdere og sjå kritisk på konklusjonar og framstilling av data er sentralt i statistikk. I sannsynsrekning talfester ein kor stor sjanse det er for at ei hending skal skje. I kombinatorikk arbeider ein med systematiske måtar å finne tal på, og det er ofte nødvendig for å kunne berekne sannsyn.

Funksjonar
Ein funksjon beskriv endring eller utvikling av ein storleik som er avhengig av ein annan, på ein eintydig måte. Funksjonar kan uttrykkjast på fleire måtar, til dømes med formlar, tabellar og grafar. Analyse av funksjonar går ut på å leite etter spesielle eigenskapar, som kor raskt ei utvikling går, og når utviklinga får spesielle verdiar.